
Supporting Assessment Practices in Secondary Computer Science Education

CSTA 2014 Annual Conference: Snow & Bienkowski 1

 *

Snow & Bienkowski: Assessment Practices in Secondary Computer Science Education
Handout for CSTA Annual Conference, 2014

Why Evidence-Centered Design?

We tend to think of “assessments” as quizzes and exams that tell us something about what

students know. But more generally, assessments give us evidence of learning whenever we give
students situations, challenges, or tasks that will elicit the needed evidence. So what if we could
design a template, blueprint, or pattern for the important ideas in computer science that would
help us generate many different forms of assessments? What if one pattern could be used to
generate paper and pencil or online tests or rubrics to score computational artifacts that students
produce? What if it could help us reveal student learning in observations of strategies, tactics,
and moves in game play, or student moves in simulation-based and tutored learning
environments? Evidence-centered design—a principled method for systematically analyzing a
domain of interest and building multiple assessment tasks—has a tool for just this purpose—a
tool called a “design pattern.

In the slide deck accompanying this workshop, ECD is described as 5 layers of work with
important questions and activities occurring at each layer. Design patterns are generated during
one layer of evidence-centered design (ECD). Although these layers suggest steps in a sequential
design process, cycles of iteration and refinement are intended, both within and across layers,
and work in different layers can occur simultaneously. Table 1 below shows a slightly different
view of these layers with examples from the computational thinking domain.

• Work at Layers 1-3 of ECD help us to unpack the idea of computational thinking and
to create detailed design documents for assessments in different domains: computer
science, science, math, programming, etc.

• Domain analysis (Layer 1) can include broad reviews of research literature from
computer science, computer science education, and learning sciences; computer
science curricula; sample assessment tasks; and relevant standards frameworks, as
well as expert input from practitioners, researchers and educators.

• Domain modeling (Layer 2) and framework development (Layer 3) result in detailed
design documents and assessment specifications.

• In Layers 4 and 5 of ECD, the job is to put assessment items into a form, implement
(pilot and test) and deliver assessments, building off of the design documents.

* Produced by the Center for Technology in Learning, SRI International, with support from the National Science
Foundation under contract numbers, CNS-1132232 and CNS-1240625. Any opinions, findings, conclusions, or
recommendations expressed in herein are those of the authors and do not necessarily reflect the views of the
National Science Foundation.

Supporting Assessment Practices in Secondary Computer Science Education

CSTA 2014 Annual Conference: Snow & Bienkowski 2

Table 1. Roles and Key Entities in the Five Layers of Evidence-Centered Design
ECD Layer Role Key Entities & Examples

1. Domain
Analysis

Gather substantive information
about the computational thinking
domain of interest that has
implications for assessment; how
knowledge is constructed,
acquired, used, and
communicated.

Computational thinking domain concepts
(e.g., abstraction, automation);
terminology (debugging); tools
(programming languages);
representations (storyboards); situations
of use (modeling predator-prey).

2. Domain
Modeling

Express assessment argument in
narrative form based on
information from Domain Analysis

Specification of knowledge, skills, and
other attributes to be assessed (e.g.,
describe result of running a program on
given data); features of situations that
can evoke evidence (find errors in
programs); kinds of performances that
convey evidence (use of recursion).

3. Conceptual
Assessment
Framework

Express assessment argument in
structures and specifications for
tasks and tests, evaluation
procedures, measurement models.

Student, evidence, and task models;
student, observable, and task variables;
rubrics; measurement models; test
assembly specifications; task templates
and task specifications.

4. Assessment
Implementation

Implement assessment, including
presentation-ready tasks and
calibrated measurement models

Task materials (including all materials,
tools, affordances); pilot test data to
hone evaluation procedures and fit
measurement models.

5. Assessment
Delivery

Coordinate interactions of students
and tasks: task-and test-level
scoring; reporting.

Tasks as presented; work products as
created; scores as evaluated.

What is in a Design Pattern?

ECD begins with domain analysis, and for our purposes here, assume that we have information
from that layer on what is involved in the content area we are measuring. This could be content
standards or learning goals for the curriculum. Design patterns arise from domain modeling in
Layer 2 and begin with the statement of the core or key idea that the design pattern covers. Here
are two examples: one is a general computational thinking practice, the other specific to an ECS
Unit 3.

Supporting Assessment Practices in Secondary Computer Science Education

CSTA 2014 Annual Conference: Snow & Bienkowski 3

After we have a good definition or description of the overall construct or unit, the next step is

to list all of the focal knowledge, skills and attributes (FKSAs). “Focal” here means central or
core. The FKSAs are the knowledge, skills, and attributes related to the student that you want to
assess. They should cover the main ideas within the construct of interest.” There are 16
“abilities” we have defined for the construct “Design and Implement Creative Solutions and
Artifacts” and we show 5 of them below, as well as 3 of the 8 we have defined for “ECS Unit 3:
Web Design.”

Example Focal Knowledge & Skills for “Design and Implement Creative Solutions and
Artifacts”

1. Ability to state a problem in order to identify the inputs and outputs of the problem
2. Ability to decompose a problem into multiple sub-problems, including the specification of

how solving the sub-problems will lead to a solution to the problem as a whole.
3. Ability to create a computational artifact given a purpose or intent
4. Ability to select appropriate techniques to develop computational artifacts
5. Ability to identify run-time errors

Example Focal Knowledge & Skills for “Unit 3: Web-Design”
1. Ability to create a set of specifications for a web page given the intent of the web page
2. Ability to express the design of a web page based on specified objectives
3. Ability to describe techniques used when designing and implementing a web page

After we have listed all of the FKSAs that make up each construct, the next step is to say

what we could observe the student doing or producing that would provide evidence of that
FKSA. These are shown below for one FKSA from each.

Example Potential Observations for One “Design and Implement Creative Solutions and
Artifacts” FKSA

1. FKSA: Ability to state a problem in order to identify the inputs and outputs of the problem
a. Accuracy of the statement of a problem
b. Appropriateness of the inputs and outputs identified

Supporting Assessment Practices in Secondary Computer Science Education

CSTA 2014 Annual Conference: Snow & Bienkowski 4

Example Potential Work Products for One “Design and Implement Creative Solutions and
Artifacts” FKSA
1. FKSA: Ability to state a problem in order to identify the inputs and outputs of the problem

a. The statement of a problem
b. The identification of inputs and outputs of a problem

Example Potential Observations for One “Unit 3: Web-Design” FKSA

1. FKSA: Ability to create a set of specifications for a web page given the intent of the web
page

a. Completeness of the description of the specifications (i.e., Did the student include a
discussion of the relevant parts of a web page such as headings and menus?)

b. Appropriateness of the set of specifications (i.e., How well do the specifications match
the intent? Is the student providing space for all of the relevant content information?)

Example Potential Work Products for One “Unit 3: Web-Design” FKSA
1. FKSA: Ability to create a set of specifications for a web page given the intent of the web page

a. The set of specifications for a web-page
b. The identification of inputs and outputs of a problem

While we are thinking about what we can observe students doing and producing, it’s natural to think

about important features of the tasks that measure them. It’s also natural to think about ways a task can be
varied: to make it easier or harder, to remove barriers due to language or culture, or other issues. The parts
of an ECD design pattern that capture these are characteristic and variable features. Characteristic features
are features that any task developed should incorporate, while variable features (as the name implies) are
features that can vary across the task. How features vary depends on the measurement goals for the task,
and could involve changing the difficulty of an item or allowing for additional KSAs to be measured.
Specifying the variable features ahead of time helps to highlight decisions that should be made when
developing items. Characteristic features specify the required features of a task that will elicit evidence of
the FKSAs.

Example Characteristic Features for a “Unit 3: Web-Design” Task

1. FKSA: Ability to create a set of specifications for a web-page given the intent of the web-page
a. Each task must provide students with an overall intent for the web-page
b. Each task must ask students to generate specifications

Example Variable Features for a “Unit 3: Web-Design” Task

1. FKSA: Ability to create a set of specifications for a web-page given the intent of the web-page
a. The intent of the web page
b. The level of detail required from the student in the set of specifications
c. The format required of the specifications
d. The amount of scaffolding provided for the development of the specifications

Once we have specified all of these parts, the design pattern is usable for creating specific items
that can be given to a student, scored, and used to make claims about what a student knows or
can do. This work involves determining which FKSAs to measure, developing items for each of
the FKSAs, and making sure the considerations stated in the design pattern are met. After that,
there’s a lot of work in piloting and validating the items with students and going back to the
design pattern to update it if needed.

Supporting Assessment Practices in Secondary Computer Science Education

CSTA 2014 Annual Conference: Snow & Bienkowski 5

Assessing Knowledge in Exploring Computer Science

One of the benefits of the design pattern is they can live on and be used for additional
assessments in new contexts and new delivery forms. Lessons learned from classroom
implementations—including teacher’s opinions on how their students will perform on the
assessment—can be used to update the elements in the design pattern – which will aid in the
development of the next assessment.

Let’s end by going back to the beginning: How does domain analysis impact assessment
development? Consider that the computer science community has decided that the kind of
understanding that students should have about these important computational practices goes
beyond recalling facts, or giving inputs to a program and predicting its outputs. Drawing from
the “5 E Model” of inquiry-based learning that ECS is built upon, students should be able to
explain, elaborate, and evaluate what they are learning. Thus, the focal KSAs underlying the
ECS assessment tasks emphasize these inquiry skills in the context of computer science learning.
These types of skills are not as straight forward to measure as knowledge skills, and the design
patterns we create can help organize information to aid in determining how to measure these
concepts.

And how do these inquiry-oriented FKSAs then impact the form of a task? Building on current
assessment research, which suggests that constructed-response tasks produce a more valid
measure of the integration of inquiry skills and computer science conceptual knowledge, the
assessments we developed for ECS used a small selection of mainly constructed response tasks.
While we understand that short answer questions place a heavier burden on students’ ability to
read and understand the scenario for each assessment task, and to interpret the instructions, we
believe that the ability to provide explanations (over picking reasonable explanations) is a critical
skill. The design pattern work (characteristic and variable features) helps assessment designers
aid students with scaffolds, such as diagrams and pictures, for each task.

Evidence-centered design gives us a sense of confidence about our argument from evidence
when tasks are used in ECS classrooms. Design patterns help us both explain what is important
to measure and give us guidelines for how to go about measuring it.

