Equal Outcomes 4 All

Chicago Alliance for Equity in Computer Science (CAFÉCS)
Preparing the Upper Midwest for Principles of Computer Science (PUMP-CS)
Principled Assessment of Computational Thinking (PACT)

Computer Science Outcomes

- **Attitudes towards computer science**
 - Our prior research has shown that the quality of students course experiences influence computer science attitudes as well as subsequent high school course taking.
 - In this research, we took a systematic approach to measuring student attitudes and course experiences

- **Computational Thinking Practices**
 - Use of a new measure developed by SRI International
 - Examine the influence of teaching and student attitudes on learning outcomes

- **How do these computer science outcomes compare by race and gender across two different contexts?**
Preliminary Results

- These results represent one year of implementation.
- In the words of Bryk et. al. in *Learning to Improve*, these results are “probably wrong and definitely incomplete.”
- It will take several years of data to have more confidence in the results.
Purpose/Objective: curriculum and PD model to promote the inclusion of women and underrepresented groups in computing.

3 Interwoven Strands
- Equity
- Inquiry
- CS Content
Computational Practices

- **Analyze** the effects of developments in computing (impact/connections)
- **Design** and **implement** creative solutions and artifacts
- **Apply** abstractions and models
- **Analyze** their computational work and the work of others
- **Communicate** computational thought processes, procedures, and results to others
- **Collaborate** with peers on computing activities
Curriculum

- Differentiated and highly scaffolded.
- Lessons build on students’ prior knowledge and experiences.

- 6 Units
 - Human-Computer Interaction [~4 weeks]
 - **Problem Solving** [~4 weeks]
 - Web Design [~5 weeks]
 - Introduction to Programming [~6 weeks]
 - Computing and Data Analysis [~6 weeks]
 - Robotics [~7 weeks]
Unit 2 Problem Solving

Purpose is to provide students with the opportunity to explore computational thinking by applying a variety of problem solving techniques. There is a focus on articulating thought processes, problem solving strategies and developing and applying algorithms.
Unit 2 Problem Solving

Daily Overview Chart

<table>
<thead>
<tr>
<th>Instructional Day</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 – 2</td>
<td>Introduce data collection and problem solving.</td>
</tr>
<tr>
<td>3</td>
<td>Introduce the four steps of the problem solving process.</td>
</tr>
<tr>
<td>4 – 6</td>
<td>Apply the problem solving process. Use different strategies to plan and carry out the plan to solve several problems. Handshake Activities 1 & 2</td>
</tr>
<tr>
<td>7 – 9</td>
<td>Reinforce the four steps of the problems solving process.</td>
</tr>
<tr>
<td>10 – 12</td>
<td>Count in the binary number system. Convert between binary and decimal numbers in the context of topics that are important to computer science.</td>
</tr>
<tr>
<td>13 – 14</td>
<td>Introduce the linear and binary search algorithms. Tower Building</td>
</tr>
</tbody>
</table>
| 15 – 16 | Explore sorted and unsorted lists and various sorting algorithms.
Selection Sort: same as the handshake problem
QuickSort: Divide and Conquer algorithm |
| 17 | Introduce minimal spanning trees and how graphs can be used to help solve problems. |
| 18 – 21 | Final projects and presentations |
Unit 2: Concept Map

Handshake #1 (N – 1)

Handshake #2 \(N(N – 1)/2\)

Linear Search (N – 1)

Tower Building Binary Search (reduce data set by \(\frac{1}{2}\)) \(O(\log N)\)

Selection Sort \(N(N – 1)/2\)

QuickSort (reduce data set) \(O(N\log N)\)

days 4 - 6

days 13 - 14

days 15 - 16

Divide & Conquer
You and your classmates are making plans to see a concert in another city. There are 15 people going, and you decide to drive several cars to the concert. Each car can hold up to 5 people, including the driver. Arya wants to take only 3 cars and put 5 people in each car. Below is a map showing your classmates’ locations. The stars show the people who are driving, and the squares show where the other people live. Figure out who goes in which car.
ECS Assessment Development

- Parallel pretest and posttest forms address first four units of ECS
- Developed by SRI International using Evidence-Centered-Design over the course of 2 years with 941 students.
 - Worked with stakeholders to identify important concepts and skills
 - Mapped those skills to a model of evidence to support inferences about those skills
 - Developed tasks that elicit the evidence
- Validity was established through expert review of items, cognitive think aloud with students, and analysis of test reliability.
Attitudes towards Computer Science

● Expectancy-Value-Cost theory (Eccles)
 ○ I expect to do well in a discipline
 ○ I value the discipline for myself and society
 ○ The cost of participating is low

● Decades of research has shown expectancy-value-cost is a strong predictor of college major, free time activities and career choices
Reach of Exploring Computer Science

- Denotes new ECS projects managed by the ECS team for 2017-2018.
- Golden, CO - CSPdWeek (5 sessions of ECS PD with teachers from all over the country)
Methods

- **Fall 2016**
 - Pretest Assessment
 - Presurvey (demographics, EVC)

- **Spring 2017**
 - Post Assessment (2 linked items)
 - Postsurvey (demographics, EVC, teaching index)
Student surveys of the prevalence of pedagogical strategies have been correlated with observations and outcomes.

- Tripod 7C correlates with Charlotte Danielson
- Vekiri pedagogy scale correlated with EVC
- Prior research shows correlation with assessment outcomes
Demographics of Study Participants (16/17)

<table>
<thead>
<tr>
<th>Demographics</th>
<th>CPS Research</th>
<th>CPS ECS</th>
<th>WI ECS - Research</th>
<th>WI</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>672</td>
<td>8302</td>
<td>234</td>
<td>9650</td>
</tr>
<tr>
<td>Female</td>
<td>40%</td>
<td>50%</td>
<td>22%</td>
<td>50%</td>
</tr>
<tr>
<td>Caucasian</td>
<td>43%</td>
<td>12%</td>
<td>75%</td>
<td>69%</td>
</tr>
<tr>
<td>African American</td>
<td>6%</td>
<td>29%</td>
<td>8%</td>
<td>11%</td>
</tr>
<tr>
<td>Hispanic</td>
<td>49%</td>
<td>50%</td>
<td>9%</td>
<td>12%</td>
</tr>
<tr>
<td>Asian</td>
<td>10%</td>
<td>7%</td>
<td>7%</td>
<td>3%</td>
</tr>
</tbody>
</table>
Influence of Teaching Experience on Learning Outcomes

![Graph showing the relationship between Years of Prior Experience with ECS and Post Test Score. The graph displays a trend where Post Test Score increases slightly with each increment of Years of Prior Experience.](image-url)
Influence of Teaching Practices of Expectancy-Value-Cost
Conceptual Framework

CS Content
- High Standards
- Rigorous Content Learning

Inquiry-Learning
- Asking critical questions
- Developing knowledge claims
- Collaborative inquiry

Equity
- Build on Cultural Wealth
- CS for Real Life Issues
- Culture of Caring

Teaching Index
- Collaboration
- Confer
- Challenge
- Active Learning
- Meaningful Learning
- Captivate
- Care
- Clarify
- Control
- Consolidate

ECS Teaching Experience

Expectancy-Value-Cost
- Expectancy
- Value
- Costs

Computational Thinking
Acknowledgement

This work was supported by grants CNS-1339392, DRL-1418149, CNS-1543217, CNS-1738515, CNS-1738572, CNS-1738691, and CNS-1738776 from the National Science Foundation (NSF). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of NSF.

The Learning Partnership
Steven McGee
Randi McGee-Tekula
Jennifer Duck
Catherine McGee

DePaul
Lucia Dettori

Loyola University
Ronald I. Greenberg

SRI International
Eric Snow
Daisy Rutstein

University of Illinois Chicago
Dale Reed

Chicago Public Schools
Brenda Wilkerson (now @ Anita Borg)
Don Yanek
Andrew M. Rasmussen

Marquette University
Dennis Brylow

Contact author: mcgee@lponline.net