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Assessment Design Patterns for Computational Thinking Practices 1

Computer science is a relatively young discipline, yet 
the effects of its application to design and inquiry reach 
far into the everyday lives of people. Computer science 
is a body of knowledge that includes new terminology 
related to computer software and hardware operations 
(e.g., pipelining, caching, CPU, and recursion), and 
new languages to express computational notions. 
Although opinions differ on whether students need 
to develop expertise in programming alone (Grover 
2013; Resnick, 2013), agreement is growing (Gallup, 
2015; Berdik, 2015; Shein, 2014; della Cava, 2015) 
that students should be exposed to the core ideas 
and ways of thinking that constitute computer 
science—computational thinking—in part because 
such knowledge can transform how science and 
engineering are practiced (Nature, 2006). For example, 
computational biologists use algorithms to model 
phenomena as complex as evolutionary pressures on 
biological systems and massive data problems such 
as gene sequencing. Not only does computational 
thinking help scientists model systems and explore 
large datasets, it also presents them with new ways of 
explaining phenomena using computational metaphors 
(Regav & Shapiro, 2005) and engenders new 
interdisciplinary communities to study science (e.g., 
Tadmor & Tidor, 2005). Indeed, computers are now 
“essential components of modern biological research, 
and scientists are being asked to adopt new skills in 
computational biology and master new terminology” 
(Loman & Watson, 2013, p. 996). 

Computer science education is expanding in K-12 
education, and research is showing links between 
learning computational thinking and learning 
science, technology, engineering, and mathematics 
(STEM) content (e.g., Basawapatna et al., 2011; 

Basu et al., 2013; Grover, Pea, & Cooper (2015); 
Lewis & Shah, 2012; Wilensky & Reisman, 2006). 
For example, Sengupta and colleagues (2013) 
used agent-based modeling and computational 
thinking to support learning in physics and biology 
and found gains in students’ reasoning using 
mathematical representations and causal reasoning 
in ecology. Consistent with the modeling practices of 
computational scientists, researchers have studied 
how students can use tools such as NetLogo or 
AgentSheets to build models or simulations of scientific 
phenomena (Basawapatna, Koh, Repenning, & Lewis, 
2013; Wilensky & Reisman, 2006). The projects 
that use computational thinking in STEM learning 
support K-12 students’ achievement of performance 
expectations that call for modeling as a way to 
understand science (NGSS, 2013). 

To teach computational thinking effectively, K-12 
educators must understand what students know 
and how learning progresses. Assessing learners’ 
knowledge of new definitions and programming 
language commands is simpler than discerning how 
they use computation and programming languages 
to solve problems and design creative computational 
artifacts. Assessing how learners apply their 
knowledge to think computationally means searching 
for evidence of deeper understanding of the connection 
between problems to solve and the comprehension 
and production of coded solutions. How, then, 
can we best measure how students think about 
problem solving with computation, apply abstraction, 
understand others’ computational work, and design 
and implement creative solutions to problems?

Introduction
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This report gives an overview of a principled approach 
to designing assessment tasks that can generate valid 
evidence of students’ abilities to think computationally. 
Principled assessment means designing assessment 
tasks to measure important knowledge and practices 
by specifying chains of evidence that can be traced 
from what students do (observable behaviors) to claims 
about what they know. Our approach to assessment 
produces documents called design patterns that 
provide an overview of how tasks can be designed, 
and a template for designing them, to elicit evidence 
about a students’ ability in constructs of interest. 
Design patterns are meant to be generative of 
multiple tasks and to guide assessment specialists in 
developing tasks to assess both knowledge and skills 
in the context of specific learning experiences. 

The design patterns presented in this report were 
developed under the project Principled Assessment 
of Computational Thinking (PACT). In that project, we 
worked closely with a particular high school computer 
science curriculum that has a strong focus on inquiry 
teaching and equity in access to computing called 
Exploring Computer Science (ECS). Our long-term 
objectives in the ongoing PACT suite of projects (under 
NSF awards CNS-1132232, CNS-1240625, CNS- 
1433065, and DRL-1418149) are as follows:

• Analyze and model the computational thinking 
domain to elicit its underlying knowledge and skills 
and develop artifacts— standards mappings, design 
patterns, and tasks—to structure the assessment 
design and development for the knowledge and skills.

• Develop and validate measures of computational 
thinking by instantiating design patterns in the 
context of specific curricula to guide assessment 
design up to and including implementation, with an 
emphasis on delivering assessments online.

• Identify the implementation factors for ECS 
and other computer science-related curricula 
that influence secondary students’ learning 
of computational thinking through the use of 
assessments and other measures.

To reach these objectives, we have pursued specific 
short-term goals:

• Create design patterns for major computational 
thinking practices and ECS units that can be 
used to design and then refine assessments as 
curriculum evolves. 

• Develop templates for assessment task 
development for computational thinking practices in 
the context of ECS. 

• Create, pilot-test, and validate for ECS four unit 
assessments (ECS Units 1-4) and a cumulative 
assessment (across Units 1-4), including the 
delivery of the assessments online.

This report addresses our first short-term goal by 
presenting a general set of design patterns that 
cut across different curricula for computational 
thinking. This set of design patterns models a 
subset of computer science knowledge: that portion 
that concerns computational thinking practices, 
or the application of design and inquiry to solving 
computational problems and creating computational 
artifacts. This set is general to practices in the 
computational thinking domain and emphasizes 
the application of design and inquiry skills to solve 
computational problems (rather than just the underlying 
conceptual knowledge needed to apply such skills).

Development of the design patterns began in 
2011 through interactions with various experts and 
working groups in computer science education and 
assessment. At the same time, the community of 
educators developing Exploring Computer Science 
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and the new Advanced Placement (AP) Computer 
Science Principles codified their broad definition of 
computational thinking practices (Arpaci-Dusseau 
et al., 2013). Adding “practices” to computational 
thinking reflects an orientation toward not just internal 
individual “thinking” but “ways of being and doing” that 
students should exhibit.  This orientation is consistent 
with the Next Generation Science Standards 
(NGSS) (NGSS Lead States, 2013), which reflect the 
conviction that science practices need to be included 
in any curriculum or assessment of deeper kinds of 
knowledge and skill. We aligned our development 
work with this orientation not only because of the 
central position of computational thinking practices 
in secondary computer science education, but also 
because practices are difficult to assess and our 
experience in principled assessment design positioned 
us to successfully address this critical need. 

This report presents four computational thinking 
practices design patterns and two supporting 
design patterns (Exhibit 1) that can guide the 
development of assessments at a secondary school 
level. The supporting constructs, collaboration and 
communication, are ways of enacting practices that 
cut across specific disciplines. As of this writing, 
these six design patterns have not yet been used 

for assessment item development. To help readers 
understand their utility, for each computational 
thinking design pattern, we illustrate how it could be 
applied in ongoing teaching projects: computational 
thinking in science in the Computational Thinking in 
STEM (CT-STEM) project (ct-stem.northwestern.edu), 
constructionist pedagogies using Scratch (scratch.mit.
edu), game and simulation design using AgentSheets 
(www.agentsheets.com), and storytelling and game 
design using Alice (www.alice.org). 

In several new NSF-funded projects, SRI is using these 
design patterns as a starting point for thinking about 
assessment in science and math and in other learning 
contexts outside formal computer science courses. We 
welcome input from the computer science education 
and assessment communities about the applicability of 
these design patterns to assessment development in 
other computer science education contexts and related 
content areas.

This report presents an overview of the computational 
thinking domain, summarizes the approach used to 
develop the design patterns, and presents the main 
portions of the design patterns for computational 
thinking practices with accompanying illustrative 
applications and the design patterns for collaboration 
and communications.

Exhibit 1: Computational Thinking Practices and Supporting Constructs

Analyze the effects of developments in computing. 

Design and implement creative solutions and artifacts. 

Design and apply abstractions and models

Analyze their computational work and the work of others.

Communicate thought processes and results

Collaborate with peers on computing activities

http://ct-stem.northwestern.edu
http://scratch.mit.edu
http://scratch.mit.edu
http://www.agentsheets.com
http://www.alice.org
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Wing (2006, 2011) defined computational thinking as the 
thought processes involved in formulating problems and 
their solutions so that the solutions are represented in a 
form that can be effectively carried out by a computer. 
Computational thinking is now recognized as a concept 
that encompasses the pervasiveness of computer 
science constructs and problem-solving strategies such 
as abstraction at different hierarchical levels, algorithmic 
thinking, automation, decomposition, modeling, patterns, 
recursion, scale, and symbolic representations (e.g., 
Cortina, 2007; Denning, 2009; Grover & Pea, 2013; 
Guzdial, 2008). In 2010, the National Research Council 
(NRC) convened a group to study the scope and nature 
of computational thinking, and the resulting report (NRC, 
2010) emphasized that thinking computationally is not 
completely synonymous with computer science, computer 
and technology literacy, or programming and that it differs 
from mathematical, scientific, and quantitative thinking.  
The working group left computational thinking undefined, 
however, so follow-on work pursued succinct definitions 
by examining workforce skills, literature synthesis, and 
curriculum standards.

For professionals in various disciplines, computational 
thinking skills both complement and extend other 21st 
century skills such as collaboration and creativity. In a 
2012 workforce study, Malyn-Smith and Lee defined a 
professional with computational thinking skills as one who 
is able to collaborate and engage “in a creative process 
to solve problems, design products, automate systems, or 
improve understanding by defining, modeling, qualifying 
and refining systems, processes or mechanisms 
generally through the use of computers” (p. 3).

Computer programming studies, in part, inspired the shift 
to computational thinking. A recent critical examination 
of the current state of practice of K-12 computational 

thinking drew from and synthesized that literature into the 
following features (Grover & Pea, 2013):

• Abstractions and pattern generalizations (including 
models and simulations) 

• Systematic processing of information  

• Symbol systems and representations  

• Algorithmic notions of flow of control  

• Structured problem decomposition (modularizing)  

• Iterative, recursive, and parallel thinking, 

• Conditional logic 

• Efficiency and performance constraints 

• Debugging and systematic error detection.

These are important characteristics that can inform 
a comprehensive view of computational thinking. 
For K-12 stakeholders, definitions for computational 
thinking seem to downplay programming and instead 
emphasize problem solving and data representations. 
Professional organizations for computer science 
and information technology, namely the International 
Society for Technology in Education (ISTE) and the 
Computer Science Teachers Association (CSTA), define 
computational thinking as follows:

formulating problems in a way that enables us 
to use a computer and other tools to help solve 
them; logically organizing and analyzing data; 
representing data through abstractions such as 
models and simulations; automating solutions 
through algorithmic thinking (a series of ordered 
steps); identifying, analyzing, and implementing 
possible solutions with the goal of achieving the 
most efficient and effective combination of steps 
and resources; and generalizing and transferring 
this problem solving process to a wide variety of 
problems. (Barr, Harrison, & Conery, 2011)

Computational Thinking
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Others have not attempted to be so comprehensive but 
instead have highlighted features that are consistent 
with their approaches to using computing to solve 
problems and design artifacts in STEM and other 
domains. For example, industry-sponsored websites 
with resources for educators emphasize elements 
including patterns, abstractions, models, algorithms, 
and data analysis and visualization (“Exploring 
Computational Thinking, n.d.) or give examples of 
computational thinking in other sciences (Phillips, 
2009; Microsoft Corporation, 2014). Some curricula 
for games and simulations emphasize computational 
patterns that capture phenomena in modeling agent 
behaviors and interactions such as diffusion, collision, 
seeking, and polling (“Scalable Game Design Wiki”, 
2014). Projects with an orientation to computational 
science tend to emphasize data, modeling, and 
systems thinking (“Computational Thinking in STEM: 
Lesson Plans,” 2015). Still, others use computational 
thinking to teach mathematics (“Bootstrap Materials: 
Curriculum and Software,” 2015).

Most examples or definitions suggest that 
computational thinking requires integration and 
application of knowledge in the context of the discipline 
it is being used in. This framing is consistent with 
expectations outlined in the Common Core State 
Standards (National Governors Association, 2010) 
and NGSS (NGSS Lead States, 2013) in which K-12 
students are expected to apply content knowledge 
in practice. The Common Core standards directly 
reference computational thinking practices in 
mathematics, such as problem solving (mathematical 
practice 1: make sense of problems and persevere in 
solving them) and abstraction (mathematical practice 
2: reason abstractly and quantitatively) (National 
Governors Association, 2010). The NGSS do not 
define computational thinking but describe “using 
mathematical and computational thinking” as an 

essential practice for modeling and analyzing and 
interpreting data (NGSS Lead States, 2013). 

We can draw from the Common Core and NGSS 
to similarly define frameworks and standards for 
computational thinking, but definitions (as above) and 
curriculum standards for computational thinking as a 
design and inquiry practice are needed for supporting 
assessment development (Bienkowski, 2015; Sykora, 
2014). Fortunately, performance standards related 
to computational thinking are replacing information 
technology fluency standards and recalibrating what 
college-ready students should know. The CSTA and 
ISTE have established computer science curriculum 
standards for three levels of knowledge in K-12 based 
on input from the professional computing community 
and computer science educators (CSTA, 2011), and 
these computer science standards include a strand 
specifically for computational thinking. The 2011 CSTA 
standards are undergoing revision and will be informed 
by a framework for computer science in K-12 currently 
under formulation by a multistakeholder team led by 
the computer science advocacy organization Code.org.

Examining definitions and standards, as well as 
learning objectives for specific courses such as ECS 
and AP Computer Science Principles, is an important 
starting point for developing assessment design 
materials for computational thinking. But standards 
and curriculum learning objectives are insufficient 
specifications for developing assessments in that they 
do not provide the level of content and measurement 
detail required for the design of assessment items and 
tasks. A complementary approach is thus required, as 
described next.

http://Code.org
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To develop assessments for computational thinking 
practices, we need to define the practices at a level 
of specificity that makes them amenable to valid and 
reliable measurement. SRI Education specializes in 
using the evidence-centered design (ECD) framework 
to develop assessments for hard-to-assess constructs. 
ECD is especially helpful when the knowledge and 
skills to be measured involve complex, multistep 
performances, such as those required in computational 
thinking. ECD helps us refine broad learning goals 
organized around constructs, describe the kinds of 
tasks and situations that would elicit evidence of a 
student’s ability, and describe how the evidence can 
be aggregated to produce information on a student’s 
ability.1 Our experience in these difficult-to-assess 
domains has been that the up-front design work ECD 
requires lays the groundwork for efficiently generating 
families of assessment items that have content validity.

ECD makes explicit, and provides tools for, the building 
of assessment arguments (Mislevy & Riconscente, 
2006; Mislevy, Steinberg, & Almond, 2003). Messick 
(1994) summarized the essence of the assessment 
argument as follows.

A construct-centered approach would begin by 
asking what complex of knowledge, skills, or 
other attributes should be assessed, presumably 
because they are tied to explicit or implicit 
objectives of instruction or are otherwise valued 
by society.  Next, what behaviors or performances 
should reveal those constructs, and what tasks 
or situations should elicit those behaviors?  Thus, 

1  More information on ECD can be found in publications by Mislevy 
and Riconscente (2005, 2006) and Haertel et al. (in press-b). 
For examples of domains where ECD has been applied, see 
DeBarger and Snow (2010) for life sciences; Mislevy, Riconscente, 
and Rutstein (2009) for model-based reasoning; and Cheng, 
Ructtinger, Fujii, and Mislevy (2010) for systems thinking.

the nature of the construct guides the selection or 
construction of relevant tasks as well as the rational 
development of construct-based scoring criteria 
and rubrics. (p. 17)

ECD supports developers in building assessment 
arguments in part by fostering more critical 
understanding of a domain like computational thinking 
through systematic generation of design documents—
design patterns and task templates—that provide 
details on the core competencies (Messick’s 
“complex of knowledge, skills, and other attributes”) 
and how they can be measured. These design 
documents capture all aspects of work from construct 
specification down to the necessary technical 
specifications to develop and deliver assessments. 
Design patterns represent a structured, narrative 
description of the evidence argument for a domain 
in way that assessment designers could use them to 
produce tasks (Liu & Haertel, 2011).

ECD is typically described in terms of five layers 
of work (Mislevy et al., 2002). These layers and 
examples of key entities/artifacts created along the 
way are shown in Exhibit 2. Although the layers 
suggest steps in a sequential design process, cycles 
of iteration and refinement are intended, both within 
and across layers, and work in different layers can 
occur simultaneously. This report presents work 
in the domain analysis and modeling layers for the 
computational thinking domain and suggests how the 
outcomes could be applied to create assessments of 
computational thinking practices for both formal and 
informal education contexts. Domain analysis helped 
us identify and define the core practices, and domain 
modeling resulted in design patterns that specified 
elements for assessment design. 

Evidence-Centered Design
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Exhibit 2. The Five Layers of Evidence-Centered Design and Key Entities for 
Computational Thinking

ECD Layer Role Key Entities & Examples

Domain analysis Gather substantive information about the 
computational thinking domain of interest 
that has implications for assessment; how 
knowledge is constructed, acquired, used, 
and communicated

Computational thinking domain concepts (e.g., abstraction, 
automation); terminology (debugging); tools (programming 
languages); representations (storyboards); situations of use 
(modeling predator-prey, visual storytelling), and curriculum 
standards and mappings

Domain modeling Express assessment argument in 
narrative form based on information from 
domain analysis

Specification of knowledge, skills, and other attributes to 
be assessed (e.g., describe result of running a program 
on given data); features of situations that can evoke 
evidence (find errors in programs); kinds of performances 
that convey evidence (use of recursion)

Conceptual 
assessment 
framework 

Express assessment argument in 
structures and specifications for tasks 
and tests, evaluation procedures, 
measurement models

Student, evidence, and task models; student, observable, 
and task variables; rubrics; measurement models; 
test assembly specifications; task templates and task 
specifications

Assessment 
implementation

Implement assessment, including 
presentation-ready tasks and calibrated 
measurement models

Tasks, task materials (including supporting materials, tools, 
affordances); pilot test data to hone evaluation procedures 
and fit measurement models

Assessment 
delivery

Coordinate interactions of students and tasks: 
task- and test-level scoring; reporting

Tasks as presented; work products as created; scores as 
evaluated

Source: From Haertel et al. (in press-a).

Domain Analysis
The main activity for domain analysis is the 
review of existing material on the topic of interest 
(Exhibit 3). For the work here, the sources included 
construct definitions; standards; curriculum; 
literature in computer science education, scientific 
inquiry, engineering design, communication, and 
collaboration; and previous computer science 
assessment projects [such as Herman, Loui, & Zilles 
(2010), McCracken et al. (2001), and Tew & Guzdial 
(2010) for postsecondary and Werner, Denner, 
Bliesner, & Rex (2009), Nicholson, Good, & Howland 
(2009), Robertson & Howells (2008), and Brennan & 
Resnick (2012) for middle school)].2

2 A source bibliography is at the end of the report.

We also sought input from experienced computer 
science teachers and received critical feedback from 
our experts and advisors (see Acknowledgments). 
We paid special attention to the CSTA standards 
(CSTA 2011), the ECS curriculum (including learning 
objectives), and the AP Computer Science Principles 
framework (including learning objectives and 
evidence statements). In particular, the ECS and 
AP Computer Science Principles adoption of four 
computational thinking practices and two supporting 
practices served as the basis for the constructs for 
which we created design patterns.
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Exhibit 3. Domain Analysis Sources for Computational Thinking Practices, Communication, 
and Collaboration

Science
Inquiry

Standards

CS Curriculum
and Standards

Communication
 & Collaboration

Literature

Expert
Review 

CS Education
Literature

Computational
Thinking
Practices

Engineering 
Design

Standards

The idea of practices in computer science curricula 
is consistent with other frameworks. For example, 
the NGSS Framework (NRC, 2012) specifies that 
each performance expectation must combine a 
relevant practice of science or engineering with a 
core disciplinary idea and crosscutting concept. 
This is to support assessments that do not measure 
students’ understanding of core ideas separately 
from their abilities to use the practices of science 
and engineering.  Instead, practices and content 
will be assessed together, ensuring that students 
not only know concepts, but that they also can use 
their understanding to solve meaningful problems 
through the practices of science inquiry and 
engineering design. The NGSS Framework uses the 
term “practices” rather than “science processes” or 
“inquiry” skills for a specific reason:

We use the term “practices” instead of a term such 
as “skills” to emphasize that engaging in scientific 
investigation [and engineering design] requires 
not only skill but also knowledge that is specific to 
each practice. (NRC, 2012, p. 30) 

An important design pattern element that emerges 
from domain analysis and that is refined during 
domain modeling is the overview statement, a 
summary of the construct.  Overviews for the key 
domain constructs are used to help generate the 
design patterns during domain modeling. 

The overviews for the computational thinking 
practices and for communication and collaboration 
are shown in Exhibit 4. Also shown are analogs, from 
early work on the AP Computer Science Principles, 
to these overviews. These analogs indicate how the 
practices we identified as foundational are consistent 
with the definitions of computational thinking practices 
in the Computer Science Principles program.3 Despite 
this consistency, we intend for the design patterns 
to serve as assessment development guides for any 
curricular program aligned with the computational 
thinking practices rather than a specific curriculum.

3  These are from the original definitions of computational thinking 
practices as described at: https://csprinciples.cs.washington.edu/
sixpractices.html

https://csprinciples.cs.washington.edu/sixpractices.html
https://csprinciples.cs.washington.edu/sixpractices.html
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Exhibit 4. Computational Thinking Practices, Overviews and AP Computer Science Principles Analogs

Construct Design Pattern Overview CS Principles Analog

Analyze the 
effects of 
developments 
in computing 

This design pattern supports the development of 
assessment tasks in which students show that they 
understand the range of problems to which computers 
and computing can be applied. Students will be asked 
to recognize aspects of computers and computing. 
They will show an understanding of how computing 
has enabled innovations in various disciplines and in 
society as a whole and at the same time has given rise 
to ethical (e.g., privacy) and social justice (e.g., equal 
access) issues. They will also demonstrate a broad 
understanding of “intelligent” machines and the idea of 
networked systems.

Identification of existing and potential innovations 
enabled by computational technology

Identification of ethical implications of 
developments in computing

Identification of the impacts (positive and 
negative) of computing innovations on society

Analysis of implications of design decisions

Evaluation of the usability of a computational artifact

Characterization of connections between 
human needs and computational functionality

Explanation of relevant intellectual property issues

Design and 
implement 
creative 
solutions and 
artifacts

This design pattern supports the development of 
tasks in which students translate novel ideas and 
problem solutions into computational solutions and 
artifacts (i.e., artifacts that involve computing, such 
as robotics, and/or solutions that are implemented as 
computer programs). Students design and implement 
according to a given purpose or intent, including for 
creative expression. (In this way, programming can 
be viewed as a communicative act.) This design 
pattern encompasses steps of both problem-solving 
and creative processes, including understanding, 
decomposing, exploring (e.g., by creating different 
representations of the problem with storyboards, flow 
charts, pseudocode), creating products that show one 
or more designed solutions and/or artifacts, and testing 
and improving the solution and or artifact.

Creation of an artifact chosen by the student 
as relevant and interesting.

Design of a solution to a stated problem.

Selection of an appropriate approach to 
solve a problem

Appropriate use of predefined algorithms

Appropriate use of programming constructs 
and data structures

Evaluation of an artifact using multiple 
criteria

Location and correction of errors

Use of appropriate technique to develop a 
computational artifact

Design 
and apply 
abstractions 
and models

Thinking strategically about abstraction is a hallmark of 
computational thinking. This design pattern supports 
the development of tasks in which students use ideas 
and representations that capture general-to-specific 
aspects, or patterns, of an entity or a process and the 
relationships/structures among entities or processes, 
including level of detail. This may include designing 
general solutions to problems or generalizing a 
specific solution to encompass a broader class of 
problems (functional abstraction). These ideas and 
representations may be used in different contexts 
(problem or disciplines). Students demonstrate 
knowledge of the representational properties of 
discrete mathematics, models, diagrams, computer 
programs (data abstraction), items found in the 
natural and man-made world, and others. They also 
demonstrate an understanding of the limitations of 
models to represent phenomena and an attention to 
the purpose of the model or abstraction.

Explanation of how data, information, and 
knowledge are represented for computational 
use

Use of simulation to investigate posed/existing 
questions and develop new questions

Selection of algorithmic principles at an 
appropriate level of abstraction

Use of different levels of abstraction

Specification of the design for a model/
simulation

Use of data abstractions

Collection or generation of data appropriate to 
a phenomenon being modeled

Comparison of generated data to an empirical 
sample
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Exhibit 4. Computational Thinking Practices, Overviews and AP Computer Science Principles 
Analogs (Continued)

Construct Design Pattern Overview CS Principles Analog

Analyze their 
computational 
work and the 
work of others

This design pattern supports the development 
of tasks in which students demonstrate that they 
can evaluate computational work (resulting in 
artifacts such as a program, program outputs, a 
website, or problem solution) and compare multiple 
computational artifacts. Students are able to 
recognize how different techniques can be used to 
solve problems or achieve computational goals in 
different ways. Students show they can evaluate 
the sufficiency (does it meet requirements?), 
accuracy (does it operate correctly?), efficiency 
(does it use computing resources wisely?), and 
elegance (does it follow guidelines of modularity, 
parsimony, adherence to language-specific and 
language-general coding idioms, simplicity, well-
structuredness, and comprehensibility?) of the 
artifact. They will demonstrate an understanding of 
how the forms that computers can take (including 
robotics) and their user interfaces affect usability (a 
special criterion for user-facing artifacts).

Identification of problems and artifacts that 
have a given property

Comparison of tools available to solve a 
problem

Evaluation of a proposed solution to a 
problem and implications of that solution’s 
use

Analysis of solution trade-offs with 
appropriate justification of possible solutions

Analysis of the result of a program

Evaluation of characteristics of problems and 
artifacts

Communicate 
thought 
processes & 
results

Communicating about computational artifacts 
supports many phases of computational thinking. 
This design pattern supports the development 
of tasks in which students show that they can 
communicate the process and results of their 
work in a way that is appropriate for the particular 
audience. Students can articulate major themes 
and ideas related to computing in writing and 
orally, supported by graphs, visualizations, and 
computational analysis.

Explanation of the meaning of results 

Description of the impact of a technology or 
artifact

Summarization of the behavior of a 
computational artifact

Explanation of the design of an artifact

Description of technology or artifact

Justification of the appropriateness and 
correctness

Collaborate 
with peers on 
computing 
activities

This design pattern supports the development of 
tasks in which students demonstrate their ability to 
engage in the collaborative aspects of computer 
science by jointly solving problems and designing/
creating computational artifacts. Students show 
they can share understanding and effort, and can 
pool knowledge and skills with peers, experts, and 
others using collaborative practices such as pair 
programming and working in pairs or teams.

Application of effective teamwork practices

Collaboration of participants

Production of artifacts that depend on active 
contribution from multiple participants

Documentation describing the use, 
functionality, and implementation of an 
artifact

Additional design pattern elements specified during 
domain modeling describe what is within and outside 
the scope of the construct and give suggestions 

and guidance for assessment developers. The main 
elements of design patterns are described next. 
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Domain Modeling 

Domain modeling in ECD produces narrative elements 
describing a domain for measurement, and the narrative 
is captured in design patterns. Design patterns in ECD 
provide specifications for the important ideas to be 
measured in the assessment and can be used, reused, 
and refined to help generate many different forms of 
assessments. For example, one pattern could be used 
to generate a paper-and-pencil test, an online interactive 
test, or a rubric to score computational artifacts that 
students produce. Design patterns are sufficiently 
general to guide measurement of learning by traditional 
paper-pencil delivery, as well as by computer-based 

assessments and even by observations of strategies, 
tactics, and moves in game play or students’ moves in 
simulation-based and tutored learning environments. 

Design Pattern Elements
Design patterns consist of elements specifying all or 
part of a construct domain in terms of the knowledge 
and skills to be measured, observations or behaviors 
that can be used as evidence of knowledge and skills 
in that domain, and tasks or activities that elicit the 
desired observations or behaviors. Exhibit 5 provides 
general definitions of the elements that appear in all 
the design patterns that we use.

Exhibit 5. Elements of a Design Pattern

Focal knowledge, 
skills, and other 
attributes (FKSAs)

The primary KSAs targeted by the design pattern and what we want to make inferences about. 
For our initial work on computational thinking practices, we focused on skills rather than 
knowledge.

 Additional KSAs Other KSAs that may be required for successful performance on the assessment tasks but are not 
the target skills that we are trying to assess. 
For computer science, this may include knowledge of mathematics or programming languages 
and tools. Additional KSAs may also be used to link across design patterns to show the 
interdependencies among skills.

 Potential 
observations

Features of the things students say, do, or make that constitute the evidence on which the 
inference about a student’s performance will be based. 
Potential observations are described using such qualities as accuracy, degree, completeness, and precision.

Potential work 
products

Some possible artifacts or observations that one could see. Work products are scored during 
assessment delivery.

Characteristic 
features

Aspects of assessment situations that are likely to evoke the desired evidence or that are required 
to support the task. 

 Variable features Aspects of assessment situations that can be varied in order to shift difficulty or emphasis.

After we have a good overview from the domain 
analysis, we specify all the focal knowledge, skills, 
and attributes underlying the construct. Focal here 
means central or core—the knowledge, skills, and 
other attributes related to the student that we want 
to assess. The FKSAs should cover the main ideas 
within the construct of interest. 

The full set of FKSAs for the construct “design and 
implement creative solutions and artifacts” is presented 
in the next section. To illustrate the level of detail used 
in a FKSA, we show five below (Exhibit 6). Note that we 
deliberately stated our FKSAs as “Ability to…” in order 
to capture the focus on practices, which we believe 
are best represented as the application of skills. This 

Focal Knowledge, Skills, and Attributes
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Although we did not impose any hierarchy on these abilities 
(as we are not describing a progression of learning), we 
did differentiate the degree to which students should be 
able to apply their knowledge by using different verbs. For 
instance, for some skills we thought that it was enough 
for students to be able to describe the phenomenon, 
whereas for other content we wanted students to be able 
to explain. For our purposes, explanation includes drawing 
relationships, engaging in interpretation, and comparing 
and analyzing. In other areas we indicate that students 
should engage in the context at a higher level by stating the 
FKSAs as the ability to evaluate. Evaluate encompasses 
explain, justify, and compare.

Potential Observations and Work Products

After specifying the FKSAs underlying a construct, we 
specify what we could observe the student doing or 
producing and how those behaviors or artifacts could 
provide evidence of the FKSAs. Potential observations 

and associated work products are shown in Exhibit 7 
for one FKSA from the construct “design and implement 
creative solutions and artifacts.” Note that by “potential” 
we intend to capture the idea that these elements can 
and should evolve as knowledge of the constructs 
evolves based on research and practice.

What we observe students say and do is more than 
just the work product, but is the work product and its 
characteristics. For example, we look for the quality—
described as accuracy and appropriateness—of 
the work product (Exhibit 7). We can also look for 
correctness but must be careful of cases where there 
is more than one right answer: In those cases we look 
for the students’ process and justification for why they 
used that process. We also look for appropriateness 
and the degree of and extent to which a work 
product exhibits a given characteristic. The potential 
observations list these characteristics, which are then 
further specified when the rubrics are developed. 

Exhibit 6. Example Focal Knowledge and Skills for the Construct “Design and Implement 
Creative Solutions and Artifacts”

1. Ability to state a problem in order to identify the inputs and outputs of the problem

2. Ability to decompose a problem into multiple subproblems, including the specification of how solving the subproblems will lead 
to a solution to the problem as a whole

3. Ability to create a computational artifact given a purpose or intent

4. Ability to select appropriate techniques to develop computational artifacts

5. Ability to identify run-time errors

6. Collaborate with peers on computing activities

is in contrast to FKSAs that may be better captured 
as knowledge statements. Complete modeling of a 
domain requires both, however, and we are currently 
expanding our design patterns to include knowledge-
focused FKSAs to capture the computer science 
conceptual knowledge underlying the practices. 

The abilities we describe in our FKSAs are practices 
that students should be learning. We attempted to 

restrict our vocabulary for these abilities—the verbs 
that describe what students should be able to do—to 
a finite set that we can measure. For example, we 
have used name/identify, describe, design/develop/
generate, explain, justify, represent, present, publish, 
summarize, discuss, provide useful feedback, listen 
and not vague terms such as integrate, recognize, 
understand, or conclude. 
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Characteristic and Variable Features

While thinking about what we can observe students 
doing and producing, it is natural to think about 
important features of the tasks that measure them. 
It is also natural to think about ways a task can be 
varied to make it easier or harder, to remove barriers 
due to language or culture, or other issues. An ECD 
design pattern captures these as characteristic and 
variable features. 

Characteristic features are features that any task 
developed from the design pattern should incorporate 
and that must be present in all tasks that measure the 
construct of interest. Variable features are features 
that can vary and may or may not be present in a 
particular task measuring the construct of interest. 
How features vary depends on the measurement 
goals for the task and could involve changing the 
difficulty of an item or allowing for additional KSAs to 
be measured or supported. Specifying the variable 
features ahead of time helps highlight decisions 
that should be made when developing items. 
Characteristic features specify the required features 
of a task, features that must be present in order for 
the task to elicit evidence of the FKSAs.

Design Pattern Development and 
Evaluation

During domain modeling, our computational thinking 
practices design patterns underwent several rounds 
of review that included critiques by the external 
experts and advisors in computer science education, 
assessment design for information technology 
literacy, inquiry assessment, and curriculum 
development. All reviewers were given curriculum and 
standards materials as background. For each design 
pattern, reviewers were asked the following: 

• Is the overall description of the computational 
thinking practice accurate and comprehensive?

• Are the important FKSAs represented?

• Are the potential observations (what we are willing 
to count as evidence) correct? 

• Are the potential work products (what we expect 
students to be able to do) appropriate?

• Are the FKSAs well matched with the potential work 
products and potential observations?

After each round of review we further refined the 
FKSAs and other design pattern elements.

Exhibit 7. Potential Observations and Work Products for the Construct “Design and Implement 
Creative Solutions and Artifacts”

Example Potential Observations for one FKSA in “Design and Implement Creative Solutions and Artifacts” 
1.  FKSA: Ability to state a problem in order to identify the inputs and outputs of the problem

1.a. Accuracy of the statement of a problem
1.b. Appropriateness of the inputs and outputs identified

Example Potential Work Products for one FKSA in “Design and Implement Creative Solutions and Artifacts” 
1. FKSA: Ability to state a problem in order to identify the inputs and outputs of the problem

1.a. The statement of a problem
1.b. The list of inputs and outputs of a problem
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The following four subsections present the design pattern elements for each of the four core computational 
thinking practices:  
1. analyze the effects of developments in computing

2. analyze their computational work and the work of others

3. design and apply abstractions and models

4. design and implement creative solutions and artifacts

For each design pattern, we present an example of an introductory computer science learning experience that aligns 
with the FKSAs specified. This alignment demonstrates the broad applicability of each pattern and suggests what 
could be measured in each context. We then present the two design patterns for communication and collaboration. 

Analyze the Effects of Developments in Computing

Overview

This design pattern supports the development of tasks in which students show that they understand 
the range of problems to which computers and computing can be applied. Students will be asked to 
recognize aspects of computers and computing. They will show an understanding of how computing has 
enabled innovations in various disciplines and in society as a whole and at the same time has given rise 
to ethical (e.g., privacy) and social justice (e.g., equal access) issues. They will also demonstrate a broad 
understanding of “intelligent” machines and the idea of networked systems.

Focal Knowledge, Skills, and Attributes

General KnowledGe of ComputinG and Computers 

1.   Ability to recognize that computers are devices that execute programs.

2.   Ability to describe the differences between how a computer performs a task and how a human performs 
a task. This includes the idea that computers follow instructions and that the instructions must be precise 
and not open to interpretation.

3.   Ability to describe the characteristics that make an artifact computational.

4.   Ability to describe the components of a computer that enable the behaviors characteristic of computers 
such as a computational processor – related to what makes a computer a computer.

use of Computers/ComputinG

5.  Ability to describe major changes in the computing and storage capacity of computers as well as changes 
in networking capability and form factor (e.g., laptop, smartphone, tablet) due to innovations in computing – 
includes changes in both hardware and software.

Computational Thinking Practices 
Design Patterns and Examples



Assessment Design Patterns for Computational Thinking Practices 15

6.  Ability to describe a change in the use of computers due to innovations in computing – includes both 
innovations in computer hardware and software.

7.  Ability to describe a way in which computing enables innovation, i.e., design and creation of new products, 
processes, or services that represent an advance in a field or allows people to do/accomplish something in 
new ways.

7.a.  Ability to describe an example of how computer programs are used to process information to gain 
insight and knowledge (including the use of computing tools to work with and make sense of large 
volumes of data in ways that humans cannot).

7.b.  Ability to describe an example of how computer programs can be used to develop new products, 
processes, or services that represent advances in various fields.

7.c.  Ability to describe an example of how advances in computing can help in dissemination of new 
products, processes, or services.

7.d.  Ability to describe an example of how advances in computing can increase communication in order to 
develop new products, processes, or services.

KnowledGe of the internet and the systems Built on it

8.  Ability to describe multiple uses of the Internet and the systems built on the Internet.

9.  Ability to explain why hierarchy and redundancy are important in the implementation of the Internet.

10.  Ability to describe interfaces and protocols that enable widespread use of the Internet and systems built 
on the Internet.

11.  Ability to explain how working in networked systems impacts privacy (such as personal data, actions, 
location, etc.).

ComputinG in everyday life

12.   Ability to recognize when computing or computational solutions are applied to other (noncomputer 
science or information technology) disciplines.

13.  Ability to describe how computers and computing aids are used in diverse careers and professions 
(noncomputer science or information technology fields such as medicine, movies, politics, art, etc.).

14.  Ability to recognize uses of computing for creativity and self-expression.

15.  Ability to recognize uses of automated data analysis to enhance understanding of complex natural and 
human systems.

16.  Ability to describe how computing enhances communication, fostering new ways to communicate and 
collaborate.

17.  Ability to evaluate how different forms of computing, such as cyber-physical systems and assistive 
technologies, enhance human capabilities.

18.  Ability to apply computational thinking (as described above) to everyday life problems or actions.

19.  Ability to recognize that computational (abstract) constructs can be applied to describe the functional 
properties of familiar objects/models.
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ComputinG and soCiety

20.  Ability to analyze the following effects of computing on societies within different economic, social, and 
cultural contexts:

20.a.  Ability to describe issues of equity and access for subgroups in the context of computing resources 
and computing fields.

20.b.  Ability to evaluate positive and negative impacts that the Internet and the web have had on societies 
and subgroups.

20.c. Ability to evaluate legal and ethical concerns raised by computing-enabled innovation.

21.  Ability to describe how the cultural context and audience for which computing artifacts are developed 
impacts their design and use.

Additional Focal Knowledge, Skills, and Attributes
• Knowledge of terminology and specific types of computers or computer parts
• Knowledge of specific computer innovations
• Knowledge of other domains/disciplines, including career knowledge
• Knowledge of social, cultural, ethical, and legal factors
• Knowledge of networks and information exchange

Characteristic Features
• All tasks must involve the use of computers or a computing task.
• All tasks must involve human use of and interaction with the computer or computing task.
• All tasks must involve networked systems.
• All tasks must involve a real-world scenario.
• All tasks must involve a societal or personal feature, such as economic, social, or cultural.
• All tasks must have an influence on one characteristic: privacy, legal, or ethical.

Variable Features
• Degree to which task requires knowledge of the internal working of a computer
• Whether the task requires description, comparison, or evaluation of computers or computing task
• Type of context provided  (everyday life/professional life) and the familiarity of the discipline or context provided
• Type of issue that is being presented: legal, ethical, privacy, or other
• The audience or culture being presented in the problem
• Whether the problem is asking for benefits or drawbacks (positive presentation or negative presentation)

Potential Observations
• Appropriateness and/or completeness of the description of the use
• Appropriateness and/or completeness of the description/explanation of the use in contexts
• Appropriateness and/or completeness of the description of the innovation
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• Appropriateness and/or completeness of the benefits and issues
• Appropriateness and/or completeness of the description of the effect of the design

Potential Work Products
• Recognize computing or computational solutions in everyday life
• Description of the use of  computers and their component parts
• Description/explanation of how computers and computing are used (in various contexts)
• Description of a  computing innovation (e.g., netwokring and the Internet)
• Description or explanation of the benefits or issues with the computing innovation, including examples
• Description of how context affects the design of a computing innovation 
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Computational thinking is making inroads into science 

and mathematics classrooms, especially through the use 

of games, models, and simulations. The Computational 

Thinking in STEM (CT-STEM) project at Northwestern 

University is developing up to 60 computational thinking 

activities designed to be offered as part of existing STEM 

courses for high school students. These embedded 

activities address the computational thinking and modeling 

requirements in the NGSS and seek to impact a broad 

set of students through the vehicle of (at present) physics, 

chemistry, mathematics, and biology courses. Tools used 

include the agent-based simulation tool NetLogo, PhET 

simulations, Desmos math tools, and others.

The project has defined four areas of CT-STEM 

practices: Data Analysis (from collecting through 

analyzing and visualizing data); Modeling & 

Simulation (using, assessing, and designing models), 

Computational Problem Solving (see below), and 

Systems Thinking. Evidence-centered design has 

previously been applied to analyze model-based 

reasoning (Mislevy, Riconscente, & Rutstein, 2009) and 

systems thinking (Cheng, Ructtinger, Fujii, & Mislevy, 

2010), and sssessment development for CT-STEM 

practices could draw on this work. For the CT-STEM 

computational problem solving practice, our design 

pattern on analyze the effects of developments in 

computing is applicable. CT-STEM’s Computational 

Problem Solving practice consists of:

• Preparing problems for computational solutions

• Programming

• Choosing effective computational tools

• Assessing different approaches/solutions to a problem

• Developing modular computational solutions

• Creating computational abstractions 

• Troubleshooting and debugging.

The CT-STEM work exemplifies FKSAs from the design 

pattern on analyzing the effects of developments in 

computing. Students who have completed the CT-

STEM activities should show evidence of the following 

FKSAs from this design pattern:

7.a.  Ability to describe an example of how computer 

programs are used to process information to 

gain insight and knowledge (including the use of 

computing tools to work with and make sense of 

large volumes of data in ways that humans cannot). 

12.  Ability to recognize when computing or 

computational solutions are applied to other 

(noncomputer science or information technology) 

disciplines.

18.  Ability to apply computational thinking (as described 

above) to everyday life problems or actions.

FKSAs from other design patterns would apply 

to this work as well. For example, the CT-STEM 

Computational Problem Solving assessment has 

students decipher code to select outputs from among 

several choices. This relates to the design patterns 

analyze their computational work and the work of 

others and design and implement creative solutions and 

artifacts. CT-STEM activities could be mapped to these 

FKSAs, and then the ECD process could be used to 

develop assessments to measure CT-STEM practices.

Analyze the Effects of Developments in Computing  
Example Application: Computational Thinking in STEM

Data 
Analysis

Modeling & 
Simulation

Computational 
Problem 
Solving

Systems 
Thinking
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Analyze Their Computational Work and the Work of Others

Overview
This design pattern supports the development of tasks in which students demonstrate that they can evaluate 
computational work (resulting in artifacts such as a program, program outputs, a website, or problem solution) 
and compare multiple computational artifacts. Students are able to recognize how different techniques 
can be used to solve problems or achieve computational goals in different ways. Students show they can 
evaluate the artifact in terms of its sufficiency (does it meet requirements?), accuracy (does it operate 
properly?), efficiency (does it use computing resources wisely?), and elegance (does it follow guidelines 
of modularity, parsimony, adherence to language-specific and language-general coding idioms, simplicity, 
well-structuredness, and comprehensibility?). They will demonstrate an understanding of how the forms that 
computers can take (including robotics) and their user interfaces affect usability (a special criterion for user-
facing artifacts).

Focal Knowledge, Skills, and Attributes
identify and Create Criteria for evaluatinG Computational worK

1.  Ability to describe the goal and/or outcome of a computational artifact (such as a program, website, or 
problem solution) and given requirements for the implementation (such as cost and delivery platform).

2.  Ability to develop multiple evaluation criteria for a computational artifact (such as a program, website, or 
problem solution) along many dimensions (e.g., general goal/desired outcome, implementation method, 
intended users, context of use).

3.  Ability to describe how form and design affect usability in human-computer interaction.

evaluate Computational worK with respeCt to Criteria (either holistiCally/BlaCK Box or 
analytiCally)

4.  Ability to evaluate computational work (such as a program, website, or problem solution) based on 
evaluation criteria including accuracy, sufficiency, efficiency, and elegance.

4.1.  Ability to identify errors in computational work (such as a program, website, or problem solution).

4.2.  Ability to evaluate the appropriateness of a computational artifact for an intended audience or 
user(s), including:

4.2.1.  All requirements are met, or competing requirements are properly prioritized,

4.2.2.  Accessibility (i.e., the inclusive practice of removing barriers that prevent interaction with, or 
access to, computational artifacts by people with disabilities) has been considered, and

4.2.3.  All possible inputs are considered.

4.3.  Ability to recognize that a working computational artifact could be implemented differently 
to optimize different criteria (e.g., more efficient in terms of memory use, speed, or more 
comprehensible computational approaches such as occur when refactoring code).

4.4.  Ability to evaluate a computational artifact based on aesthetics in the implementation design of the 
artifact (including simplicity, well-structuredness, modularity, and comprehensibility).
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4.5.  Ability to evaluate an artifact based on aesthetics in the look and feel of the computational artifact 
(user interface and usability).

Compare multiple solutions alonG Criteria

5.  Ability to evaluate trade-offs among multiple solutions (as computational artifacts) to the same problem 
based on some evaluation criteria (such as sufficiency, efficiency, accuracy, and elegance).

Additional Focal Knowledge, Skills, and Attributes
• Knowledge of hardware and software components of a computer system
• Knowledge of relevant evaluation criteria for computational solutions, such as speed, memory usage, 

power requirements, reusability of code, etc.
• Knowledge of representations of computational artifacts

Characteristic Features
• Tasks should provide the student with one or more examples of computational work (aka, artifact).
• The computational artifact should have obvious criteria on which it can vary, including different potential 

implementations and different usability.
• Tasks should communicate the goal or intended use of the artifact.

Variable Features
• Number of examples of computational work given
• Amount of detail given about the computational work
• Type of computational work and apparentness of the criteria
• Amount of detail provided about the evaluation criteria
• Difficulty level of discerning criteria (errors, usability, performance)
• Whether the artifact is yours or another’s
• The degree to which the artifacts are usable vs. unusable

Potential Observations
• Appropriateness and thoroughness of the descriptions, evaluations, and comparisons of computational 

artifacts using different criteria
• Degree to which responses consider differences in requirement priorities, trade-offs among criteria, and 

different approaches to implementation
• Appropriateness of  criteria to evaluate computational artifacts. Breadth of the dimensions considered
• Appropriateness of  goal described for a computational artifact including references to requirements
• Degree to which the explanations relate to the goal of the artifact

Potential Work Products
• Descriptions, evaluations, and comparisons of computational artifacts in text, diagrams, etc., using both 

quantitative and qualitative criteria
• Descriptions  of evaluation criteria and of dimensions
• Description  of a  goal for a computational artifact including references to requirements

• Explanations of why criteria were chosen for evaluation and comparison
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Computational thinking is not just for problem solving: It 

also finds a home in environments that support creativity 

and self-expression. In the context of “constructionist” 

pedagogies, the Scratch (https://scratch.mit.edu) 

environment provides a visual canvas for users to 

translate blocks of code into characters, actions, and 

sounds on the screen. The Scratch project website 

enables creators to share their stories, simulations, and 

art with others. When shared, the code to create these 

becomes available.

Based on the common programming practices of sharing 

and building on others’ work, Scratch supports “reusing 

and remixing” as a computational thinking practice that 

puts coders into authentic contexts for understanding 

code and attributing ownership and enables creators 

to potentially build more complex code than they are 

currently capable of. Other Scratch computational 

practices include being incremental and iterative, testing 

and debugging, and abstracting and modularizing.

Reusing and remixing draw on the following FKSAs in 

the analyze computational work design pattern:

1.  Ability to describe the goal and/or outcome of a 

computational artifact (such as a program, website, 

or problem solution) and given requirements for the 

implementation (such as cost and delivery platform).

4.  Ability to evaluate computational work (such as a 

program, website, or problem solution) based on 

evaluation criteria including accuracy, sufficiency, 

efficiency, and elegance.

FKSAs from other design patterns would apply to this work 

as well. For example, there are legal and ethical issues 

around reuse, so FKSAs from analyze effects is applicable:  

20.c.  Ability to evaluate legal and ethical concerns 

raised by computing-enabled innovation.

Analyze Their Computational Work and the Work of Others  
Example Application: Remixing in Scratch

Source: https://scratch.mit.edu/projects/69988504/

https://scratch.mit.edu
https://scratch.mit.edu/projects/69988504/
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Design and Apply Abstractions and Models

Overview

Thinking strategically about abstraction is a hallmark of computational thinking. This design pattern supports the 
development of tasks in which students use ideas and representations that capture general to specific aspects, 
or patterns, of an entity or a process and the relationships/structures among entities or processes, including 
level of detail. This may include designing general solutions to problems or generalizing a specific solution to 
encompass a broader class of problems (functional abstraction). These ideas and representations may be 
used in different contexts (problem or disciplines). Students demonstrate knowledge of the representational 
properties of discrete mathematics, models, diagrams, computer programs (data abstraction), items found in the 
natural and man-made world, and others. They also demonstrate an understanding of the limitations of models 
to represent phenomena and attention to the purpose of the model or abstraction.

Focal Knowledge, Skills, and Attributes

foundational KnowledGe involvinG aBstraCtion in ComputinG

1.  Ability to explain what abstraction is, both functional and data.

2.  Ability to reason about a problem at multiple levels of detail.

3.  Ability to explain the benefits of using abstraction in problem solving, e.g., to manage complexity and 
generalize patterns.

4.  Ability to explain that an algorithm is a form of abstraction that contains a sequence of instructions whose 
end state or output can be determined once given a particular starting state.

5.  Ability to explain the characteristics of problems for which abstraction would be useful.

6.  Ability to describe how a computer model makes a representation of the real world.

7.  Ability to explain how computers represent mathematical objects and logical operations for purposes of 
computation and modeling.

8.  Ability to explain how computers represent objects as data and data as objects (e.g., media files, QR codes).

9.  Ability to explain the connections between elements of mathematics and computer science including 
binary numbers, logic, sets, and functions.

analyze a model or aBstraCtion

10.  Ability to analyze data to identify patterns through modeling and simulation.

11.  Ability to evaluate how a model or simulation helps abstract a phenomenon and to computationally 
understand the phenomenon, e.g., how it reacts to various inputs.

12.  Ability to explain why an abstraction is appropriate (or not appropriate) based on the purpose(s) of the 
abstraction.

12.a.  Ability to describe what features of an entity or process are captured in an abstraction and how an 
abstraction captures the essential features of a problem or process for a given purpose.
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12.b.  Ability to explain the value of abstraction (e.g., hiding details) to manage problem complexity for a 
given purpose.

12.c.  Ability to analyze whether an abstraction is appropriate for a given purpose because functionally 
important factors/features were captured or omitted (e.g., in a model or simulation).

12.d.  Ability to recognize or analyze whether an abstraction is appropriate for a given purpose because 
the right assumptions were made to accurately simplify a problem and make it easier to solve.

Create aBstraCtion or models as a mappinG Between an artifaCt and/or model

13.  Ability to generalize patterns across similar problems or processes.

14.  Ability to break down or decompose a problem or process into parts or subproblems to simplify the complex.

15.  Ability to explain the use and purposes of application program interfaces (APIs) and libraries to facilitate 
complex programming solutions by hiding details.

16.  Ability to explain how parameterization can be used to generalize a specific solution.

17.  Ability to describe how predefined functions, classes, and methods are used to divide a complex problem 
into simpler parts.

desiGn solution

18.  Ability to design an abstraction to represent a problem or solution.

19.  Ability to create algorithms that capture features, aspects, characteristics, relationships, and/or structure 
of problems that meet specified purposes. 

20.  Ability to explain how the features of an algorithm map to features of a problem.

21.  Ability to create solutions to problems at multiple levels of detail, including describing what components 
are at each level and relationships among components and between levels.

22. Ability to use abstraction as a means of separating specification from implementation.

23.  Ability to express a solution, using standard design tools, that captures the relationships among entities or 
processes in the solution, and/or general to specific aspects of the entities or processes in the solution.

analyze usinG Computational modelinG, simulation, and data manipulation

24.  Ability to apply a variety of analysis techniques to find useful patterns in large data sets including text 
corpora and data that can be plotted in various ways.

25.  Ability to use computers to test hypotheses about data.

26.  Ability to describe ways in which computers use models of intelligent behavior (e.g., robot motion, speech 
and language understanding, and computer vision).

27.  Ability to identify/describe how abstraction is used in reasoning about digital data (including how data are 
represented and how binary sequences can be interpreted)

represent alternatively

28.  Ability to express abstractions using various representations, such as graphs, diagrams, cultural artifacts, 
storyboards, or computer programs.
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29.  Ability to use visual representations of problem states, structures, and data (e.g., graphs, charts, network 
diagrams, flowcharts).

30.  Ability to represent data in a variety of ways including text, sounds, pictures, and numbers.

31.  Ability to describe the features of large data sets that make them appropriate for automated analysis.

32.  Ability to analyze communication (among people, computers, etc.) as forms of data exchange.

Additional Focal Knowledge, Skills, and Attributes
• Knowledge of mathematical concepts and representations
• Ability to code a solution to a problem
• Knowledge of various computational models
• Knowledge of specific algorithms
• Knowledge of the characteristics of an algorithm

Characteristic Features
• Must involve a computing task or problem where abstraction is appropriate.
• The task must be tied to a real-world situation.

Variable Features
• Is the abstraction given to the student, or something the student comes up with?
• The level of difficulty of the abstraction
• How far removed is the abstraction from the actual problem?
• The degree to which the abstraction involves mathematics (including logic)
• The representation (or type of representation) of the abstraction
• The type and complexity of the scenario given (includes not having a scenario)
• The number of situations provided in which students are asked to generalize
• The degree to which the problem given is decomposable
• Type of techniques appropriate to use for analysis of the problem space
• The size of the data set provided
• Degree to which the problem space is familiar
• The degree to which the problem space is well defined
• Group or individual work
• Correspondence of the elements between the abstraction and the problem
• Wether or not they talk about abstraction in general or as it applies to a particular problem

Potential Observations
• The degree to which the abstraction matches the need of the problem
• The accuracy of the representation
• The number of representations used
• The appropriateness of the representations



Assessment Design Patterns for Computational Thinking Practices 25

• The appropriateness of the explanation
• The degree to which the implementation matches the abstraction
• The degree to which abstraction is applied in the implementation
• The degree to which the map is appropriate for the problem and the elements
• The degree to which the explanation or documentation is a clear description of the abstraction (clarity of 

the explanation or documentation)
• The degree to which the analysis is appropriate
• The correctness of the analysis
• The appropriateness of the application or the correctness of the application of the abstraction
• The accuracy of the implementation or application of the abstraction

Potential Work Products
• One or more representations of an abstraction, problem, problem space, or analysis
• The explanation of or related to the abstraction (such as how it was applied, why it is appropriate)
• Implementation of the abstraction
• A mapping between elements of the problem and elements of the abstraction
• Explanation or documentation of the implementation or abstraction
• The analysis of the abstraction or model
• The application of the abstraction
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The Scalable Game Design (SGD) project uses a 

combination of tools, strong teacher education, and 

pedagogy to support student design of games and 

science simulations using the visual, drag-and-drop, 

agent-based language AgentSheets. Offered within 

existing computing education and STEM courses, 

the curriculum introduces students to computational 

thinking through game design and then advances to 

design of simulations in STEM topics (e.g., forest fire, 

predator-prey models). SGD advocates a “project-

first” approach that pairs just-in-time skill acquisition 

with immediate skill application with the end goal 

of producing an executable and error-free tangible 

computational artifact. 

SGD researchers have applied latent semantic analysis 

to thousands of student submissions to their game 

arcade and have discerned a common set of general 

patterns that describe agent/object interaction in games 

and simulations. These computational thinking patterns, 

such as collision, diffusion, path finding, and hierarchy 

of needs, are explicitly taught to students, and their 

use in programs is counted as evidence of increasing 

sophistication (Repenning, Webb, & Ioannidou, 2010).

SGD’s patterns are good examples of the use of 

abstraction in understanding and solving problems 

through design in a particular context. They exemplify 

the following FKSAs:

2.  Ability to reason about a problem at multiple levels of 

detail.

3.  Ability to explain the benefits of using abstraction 

in problem solving, e.g., to manage complexity and 

generalize patterns.

12.  Ability to explain why an abstraction is appropriate 

(or not appropriate) based on the purpose(s) of the 

abstraction.

20.  Ability to explain how the features of an algorithm 

map to features of a problem.

Using these FKSAs and the SGD activities, we could 

instantiate the abstraction and modeling design pattern 

to produce assessment tasks that probe for student’s 

deeper understanding of these patterns and how they 

serve as abstractions.

Design and Apply Abstractions and Models  
Example Application: Abstraction in Game Design 

http://sgd.cs.colorado.edu/wiki/Scalable_Game_Design_wiki
http://www.agentsheets.com/
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Design and Implement Creative Solutions and Artifacts 

Overview

This design pattern supports the development of tasks in which students translate novel ideas and problem 
solutions into computational solutions and artifacts (i.e., artifacts that involve computing, such as robotics, 
and/or solutions that are implemented as computer programs). Students design and implement according to 
a given purpose or intent, including for creative expression. (In this way, programming can be viewed as a 
communicative act.) This design pattern encompasses steps of both problem solving and creative processes, 
including understanding, decomposing, exploring (e.g., by creating different representations of the problem 
with storyboards, flowcharts, and pseudocode), creating products that show one or more designed solutions 
and/or artifacts, and testing and improving the solution and or artifact.

Focal Knowledge, Skills, and Attributes

frame/explore the proBlem/approaCh

1.  Understand that computational solutions can be designed for multiple purposes, e.g., a practical, personal, 
or societal aspect, personal curiosity, or expression of creativity.

2.  Ability to describe creative aspects of the process used to design a computational artifact and of the artifact 
itself.

3.  Ability to state a problem/approach in terms of what is given and what the end result or outcome should be.

4.  Ability to evaluate existing programs and solutions (including students’ own creations) in light of a new 
problem or purpose.

5.  Ability to state what a program currently in design will output as a result of anticipated inputs.

5.a.  Ability to identify boundary conditions (edge cases) and how the program should handle them.

6.  Ability to iterate on the statement of the problem/approach.

deCompose the proBlem/approaCh and desiGn the solution/artifaCt

7.  Ability to classify problems as tractable, intractable, or computationally solvable/unsolvable.

8.  Ability to break down a problem/intent into subparts in order to make it more manageable or 
comprehensible.

9.  Ability to break down a problem with the goal of collaboratively building a solution with a team.

10.  Ability to compose a solution by combining subparts that will lead to a solution to the problem as a whole.

11.  Ability to identify what the logical and illogical inputs are for a computational solution.

12.  Ability to identify boundary conditions that must be kept in mind when generating a computational 
solution.

13.  Ability to design a computational solution that handles the desired range of inputs and is able to deal with 
boundary conditions/edge cases.
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14.  Ability to generate multiple approaches to solving a problem.

15.  Ability to compare multiple approaches to solving a problem.

16.  Ability to iteratively refine the design of the computational solution (based on results from 
implementation).

17.  Ability to create a specification for an implementation of a solution or artifact.

implement the solution/artifaCt

18.  Understand how different tools (e.g., programming languages and software development environments), 
approaches (e.g., recursion), and methods (e.g., to describe a solution to a problem in words or 
representation separate from a program) could be used to create an effective solution to a problem.

19.  Ability to evaluate what computational tool among a given set will be most appropriate to create a 
computational artifact. 

20.  Ability to compare the trade-offs between multiple approaches/techniques to implementing a problem 
based on certain evaluation criteria. For example, a program could be solved more elegantly (albeit more 
complex to code) through recursion, or a section of code could be made into a function or method (this 
may require advance planning, but the code becomes more modular), or use of a certain data structure 
may take more memory but reduce execution time, etc. 

21.  Ability to code complete solutions to problems (that handle the desired range of inputs and are able 
to deal with edge cases) in a programming language using an iterative process of coding, testing, and 
debugging.

22.  Ability to use programming constructs to create executable solutions (i.e., code) including:

22.a.  Ability to use sequence in algorithmic instructions,

22.b.  Ability to use conditionals to incorporate different pathways based on selection criteria,

22.c. Ability to use Boolean logic expression to incorporate selection and looping criteria, and

22.d. Ability to incorporate repetition of blocks of code using looping constructs.

23.  Ability to explain the alignment between a particular computational artifact and its specifications 
(including where the artifact differs from the specification of the problem or approach).

test/deBuG/improve the solution/artifaCt

24. Ability to efficiently identify the source of run-time error(s).

25. Ability to explain the cause(s) of run-time error(s).

26.  Ability to describe a systematic method for error-detection (such as test cases, unit testing, white box, 
black box, and integration testing).

27.  Ability to implement testing and debugging methods to test and fix a computational solution.

Additional Focal Knowledge, Skills, and Attributes
• Knowledge of terminology
• Knowledge of specific programming languages
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• Knowledge of specific design environments
• Knowledge of other domains/disciplines

Characteristic Features
• A problem or situation requiring a computational solution must be presented.

Variable Features
• Level of difficulty of the computational solution required
• Type of computational solution
• Type of problem provided
• Representation of the computational solution asked for
• Whether or not the computational solution is presented or asked for
• Degree to which the computational solution addresses the problem/situation/requirements of the solution
• Whether or not the student is coming up with a solution/evaluation a solution/or comparing multiple solutions

Potential Observations
• Degree to which the identified purpose is related to the computational solution
• Accuracy of the description of the design process
• Completeness of the description of the design process
• Degree to which the computational solution addresses the problem
• Flexibility in the computational solution
• Level of complexity of the computational solution
• Correctness of the computational solution (e.g., the degree to which it provides the expected output given 

input, the degree to which it runs without errors)
• Appropriateness of the use of programming structures in the computational solution
• Efficiency of the computational solution
• Accuracy of the explanation or description of the computational solution
• Completeness of the explanation or description of the computational solution (or degree to which the 

explanation or description covers the aspects of the computational solution being asked about)
• Accuracy of the description of the problem and problem space
• Completeness of the  description of the problem and problem space (or degree to which the description 

covers the aspects of the problem and/or problem space being asked about)
• Accuracy of the explanation of the different tools
• Completeness of the  description of the debugging process (or degree to which the description covers the 

aspects of the debugging process being asked about)
• Efficiency of the debugging process
• Degree to which the debugging process found and/or corrected the errors
• Degree to which the comparison addresses the differences between the two solutions or strategies
• Accuracy of the comparison of the solutions or strategies
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Potential Work Products
• Identification of the purpose (or purposes)  of the computational solution
• Description of the design process
• The computational solution
• Description or explanation of the computational solution
• Description of the problem and problem space (includes a description of the subparts to a problem and 

boundary conditions)
• Explanation of how different tools may be used or were used to create an artifact
• Description of the debugging process (either as applied to a particular computational solution or in general)
• Trace of the debugging process
• Comparison of multiple computational solutions or strategies
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Game programming is increasingly being 
introduced in middle and high school as a way 
to design and implement creative computational 
artifacts that also engage students in complex 
problem solving. Using versions of Alice and 
Storytelling Alice, a team of researchers at 
ETR Associates and UC Santa Cruz has spent 
more than a decade studying children and 
game programming in middle school, with a 
focus on girls and ethnic minority youth who are 
historically underrepresented in computing.

The games created by the middle school 
children typically include game mechanics such 
as guessing, collecting, and hiding objects. 
The games rely on a range of programming 
constructs from simple event handlers to 
(student-created) methods, conditional 
statements, loops, variables (including lists), 
and Boolean logic. Students use several 
programming patterns in the course of creating 
these games, such as creation of a “Counter” 
integer variable, initializing and incrementing 
it, and making a change in the game state 
depending on the value of the variable.

Game programming draws on the following 
FKSAs in the Design and Implement Creative 
Solutions and Artifacts design pattern:

1.  Understand that computational solutions 
can be designed for multiple purposes, e.g., 

a practical, personal, or societal aspect, 
personal curiosity, or expression of creativity.

10.  Ability to compose a solution by combining 
subparts that will lead to a solution to the 
problem as a whole.

11.  Ability to identify what the logical and illogical 
inputs are for a computational solution.

16.  Ability to iteratively refine the design of the 
computational solution (based on results from 
implementation).

17.  Ability to code complete solutions to problems 
(that handle the desired range of inputs 
and are able to deal with edge cases) in a 
programming language using an iterative 
process of coding, testing, and debugging.

22.  Ability to use programming constructs to create 
executable solutions (i.e. code) including:

22.a.  Ability to use sequence in algorithmic 
instructions,

22.b.  Ability to use conditionals to incorporate 
different pathways based on selection 
criteria,

22.c.  Ability to use Boolean logic expression to 
incorporate selection and looping criteria, 

22.d.  Ability to incorporate repetition of blocks 
of code using looping constructs.

FKSAs from other design patterns such abstraction 
and modeling also apply to game programming.

Design and Implement Creative Solutions and Artifacts  
Example Application: Game Creation in Alice
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Communication and Collaboration in Computational Thinking 
These two practices not only cross the other computational thinking practices we are modeling (e.g., you 
can communicate and collaborate as part of designing and implementing creative solutions and artifacts), 
but also are inherently performance based. The design patterns that we have created for these crosscutting 
computational thinking practices provide guidance on what to look for as part of communication or 
collaboration. While communication and collaboration are important skills (e.g., OECD, 2013), teachers are 
not always given guidance in a curriculum on how to teach and assess them. For example, in our work with 
ECS, we found that the collaboration component is underspecified in terms of stated learning objectives. 
We found only one ECS objective that relates directly to collaboration, although there are collaborative 
projects listed as activities in the curriculum. (Like other objectives, these may be addressed more in the ECS 
teacher professional development than in the objectives stated in the curriculum as written.) Our design of 
the communication and collaboration design patterns were inspired by work on applying ECD to scenario-
based learning. Related work is examining approaches for assessing content-oriented skills (such as our 
computational thinking practices) in a collaborative framework assessed in the context of work that would 
involve these practices (Davier & Halpin, 2013). 

Communicate Thought Processes and Results

Overview

Communicating about computational artifacts supports many phases of computational thinking. This design 
pattern supports the development of tasks in which students show that they can communicate the process and 
results of their work in a way that is appropriate for the particular audience. Students can articulate major themes 
and ideas related to computing in writing and orally supported by graphs, visualizations, and computational 
analysis.

Computer Science Principles
• Explanation of the meaning of results
• Description of the impact of a technology or artifact
• Summarization of the behavior of a computational artifact
• Explanation of the design of an artifact
• Description of technology or artifact
• Justification of the appropriateness and correctness

Focal Knowledge, Skills and Attributes 
1.  Ability to generate written or visual documentation (e.g., report, essay, presentation slides, video) that 

describes a computational artifact, computational problem or intent, problem solution, or process to 
support the development of a computational artifact or problem solution (includes program documentation).
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2.  Ability to use different representations (such as storyboards, graphs, flowcharts, and code documentation) 
to communicate ideas about computational artifacts, computational problems/intents, or computational 
problem solutions/designs.

3.  Ability to describe a computational artifact, computational problem or intent, problem solutions, or process 
of developing a computational artifact or problem solution for different purposes (e.g., including all key 
information for an audience for purposes such as making a decision or evaluating consequences.)

4.  Ability to organize, explain, and present information about computational artifacts and solutions orally so it 
is clear to (that is, adapted to) a given technical or nontechnical audience. Special audiences include:

4.a. Users

4.b. Team members

4.c. Adapters/other developers

5.  Ability to use vocal, behavioral, and visual cues to clearly express ideas to an audience and engage the 
audience in the content.

Additional Knowledge, Skills, and Attributes
• Understanding of technical vocabulary in the domain (domain specific language)
• Knowledge of appropriate strategies for communicating an idea: vocal, behavioral, and visual cues

Variable Features
• Intended audience could be technical or nontechnical

Collaborate with Peers on Computing Activities

Overview

This design pattern supports the development of tasks in which a student demonstrates the ability to 
engage in the collaborative aspects of computer science by jointly solving problems and designing/creating 
computational artifacts. Students shows they can work with peers, experts, and others using collaborative 
practices such as pair programming and working in project teams, including groups or pairs.

A broader definition comes from the PISA Collaborative Problem Solving Framework:

Collaborative problem-solving or collaborative design competency is the capacity of an individual to effectively 
engage in a process whereby two or more agents attempt to solve a problem or design an artifact by sharing 
the understanding and effort required to come to a solution/design and pooling their knowledge, skills and 
efforts to reach that solution/design.” (Adapted from PISA, 2013, pg. 7). 

Computer Science Principles
• Application of effective teamwork practices.
• Collaboration of participants.
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• Production of artifacts that depend on active contribution from multiple participants.
• Documentation describing the use, functionality, and implementation of an artifact.

Focal Knowledge, Skills, and Attributes 
1.  Ability to discuss and develop a shared understanding of a problem and requirements in a given scenario.

2.  Ability to proactively seek and collect solutions and discuss alternative solutions to a problem within a group or pair.

3.  Ability to provide accurate, understandable, and tactful feedback to team members.

4.  Ability to understand, value, and accept multiple perspectives on a problem and its solution(s).

5.  Ability to integrate feedback from multiple perspectives to develop a solution to a computational thinking 
problem (e.g., code reviews, discussing specifications with clients, usability testing).

6.  Ability to collaborate/participate across different time spans and locations.

7.  Ability to use collaborative tools (e.g., Dropbox auto-sync, Google docs) and techniques (e.g., pair 
programming, code reviews).

interpersonal

8.  Ability to work through and resolve conflicts among ideas and people.

9.  Ability to work toward consensus and trust building with other members of the team.

10.   Ability to ensure that everyone has a role within the team and that all necessary tasks are covered/that 
together the tasks accomplish the overall goal.

11.   Ability to take on useful roles within a team, i.e., one that improves the understanding of and outcomes for 
the problem/intent/approach.

12.   Ability to recognize and build on expertise distributed across the team. 

Additional Knowledge, Skills and Attributes (Additional KSAs)
• Willingness to put in the effort to work with another student.
• Ability to identify how collaboration influences the design and development of software products.
• Ability to communicate (see other Design Pattern)
• Ability to identify what makes an effective team/pair and reflect on how well a team worked together, e.g., 

cooperation, not competition; contribution, not holding back.
• Ability to find the best partner (for computing work)
• Ability to set up physical space to support effective collaboration (e.g., room for both students at monitor)

Potential Observations
• Joint attention: students are looking at the same things
• Mutual engagement: students are actively involved with each other
• Individual agency: each student has responsibility and opportunity for action in the team and for learning 

from the team’s work
• Group action and accountability: students are discussing, making, or problem solving together 
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• Group Organization: students have designed/taken on roles, responsibilities, and measures of progress
• Constructive discourse patterns: asking high-level questions to advance the understanding of the group, 

making and acknowledging contributions, finding common ground, providing and receiving help, etc.
• Monitoring and reflecting on teamwork (i.e., meta-cognition and self-regulation)

Characteristic Features
• Computational task is complex enough for a team to tackle and for multiple inputs to be incorporated.

Variable Features
• Team members: peers, experts, users.
• Location of team members
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Use of Design Patterns

When domain modeling is complete, the assessment 
argument is further described as specifications for 
tasks and assessments, evaluation procedures, 
and measurement models (Exhibit 2, Conceptual 
Assessment Framework layer). Often, the emphasis 
is on task development to help place students in 
observable performance situations that elicit the 
desired FKSAs. Observation of task performance can 
take many forms: paper-and-pencil tests; analysis of 
artifacts produced (Brennan & Resnick, 2012; Werner, 
Denner, & Campe, 2014); artifact-based interviews 
(Barron et al., 2002; Grover, Pea, & Cooper, 2015); 
strategies, tactics, and moves in game play (Kerr 
& Chung, 2012; Shute, 2011); student moves in 
simulation-based and tutored learning environments 
(Gobert et al., 2013); environments that make 
students’ thinking visible (Linn, Clark, & Slotta, 2003); 
and, in more recent work, learning analytics-enabled 
environments that reveal cognitive and noncognitive 
factors that help or hinder student learning (Berland, 
Martin, Benton, Smith, & Davis, 2013). Evidence is not 
obtained from passively observing but by deliberately 
putting students in situations, challenges, or tasks that 
will elicit the needed evidence (Grover & Bienkowski, 
forthcoming). 

At the conceptual assessment framework layer, 
FKSAs are selected (and possibly combined) to 
formulate the student model. Assessment designers 
decide which FKSAs the tasks will cover and what 
modifications (if any) need to be done to make 
them align with particular learning objectives in a 
curriculum. In a companion model, the evidence 
model, designers define how tasks are going to be 
scored, what measurement models will be applied 
to the scores, and the meaning of the scores. Then 

the combination of the two models defines precisely 
what will be inferred about the student’s performance 
based on the assessment. 

Designers also define the task model at the 
conceptual assessment framework layer. The task 
model specifies the number and types of tasks to be 
included and describes the specific requirements of 
the assessment, such as the format of the items (e.g., 
paper and pencil) and the amount of time a student 
has to complete it. Note that the student, evidence, 
and task models are not created in a strict linear 
manner; rather, the assessment designers refine the 
models in conjunction, iterating among them to bring 
them into alignment and prepare a logically coherent 
foundation for the new assessment. Thus, as the task 
model is created, it may influence the earlier work on 
the student and evidence models.

Finally, at the assessment implementation and 
delivery layers, items and assessment forms are 
developed, reviewed, and validated in accordance 
with standards for validity (AERA/APA/NCME, 2014). 
For example, early piloting work can include think-
alouds with students as they complete the tasks, 
expert reviews, and pilot testing with a sample of 
students close to the target population to calibrate the 
item difficulty and determine whether differences exist 
among subgroups of students (e.g, differential item 
functioning analyses, Osterlind & Everson, 2009). 
Later field testing may involve larger and more diverse 
samples of students and further psychometric work 
would be conducted at that point.
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Our experience, as well as others’ (Haertel, et al., in 
press-a), is that a rigorous and principled approach to 
assessment design yields not only valid assessments of 
well-defined knowledge and skills, but also templates for 
new sets of assessments that can be used to measure 
the same knowledge or skills in new contexts. The 
design patterns described in this report represent a first 
step to building such templates so that computational 
thinking practices, collaboration, and communication 
can be assessed in a wide variety of learning 
environments and with different delivery formats. 

For use in assessment development, these design 
patterns should be crossed with the learning 
objectives of the curriculum to be assessed. When 
developing assessment tasks, there are additional 
areas to consider. For one, the design patterns 
described in this report do not currently specify the 
knowledge that is entailed in computational thinking. 
This is in part because the type of knowledge 
needed may depend on the context for which the 
skills are being taught. Therefore, when developing 
an assessment for a particular content area it is 
important to identify the knowledge that may go along 
with the practices. This can help in the development 
of items that determine whether students are 
struggling with the practice or with the knowledge. 
For building assessments of practices, the domain-
specific knowledge may serve as an additional 
rather than a focal knowledge or skill. Such items 
would provide classroom teachers with diagnostic 
information.

Our work on these practices was anchored in 
the decisions made in the AP Computer Science 
Principles and ECS curricula to adopt four core 
practices and two crosscutting practices as key 

constructs in introductory computer science in 
secondary schools. These practices do not represent 
comprehensive knowledge and skills across the 
computer science domain but instead represent core 
practices, in the spirit of going against the mile-
wide, inch-deep coverage in previous K-12 science 
standards. And like the newest standards for science 
and mathematics, they assess the application of 
design and inquiry skills to solve computational 
problems. When appropriate, the FKSAs in the 
practices can be assessed in the context of 
collaboration and communication; alternatively, they 
can be assessed independently.

Evidence-centered design gives us confidence about 
our argument from evidence when tasks are used to 
measure learning. Design patterns help us both explain 
what is important to measure and provide guidelines 
for how to approach measuring what is important. 

As previously noted, the creation of design patterns 
is a necessarily interdisciplinary and iterative 
process. The design patterns presented in this report 
are a principled, vetted but initial step in modeling 
the computational thinking practices domain for 
assessment development purposes. The design 
patterns are thus works in progress, and we expect to 
further engage the computer science education and 
assessment communities in their evolution. The most 
up-to-date versions will always be available on our 
website, pact.sri.com.

Summary and Next Steps

http://pact.sri.com
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